5 liens privรฉs
It was World War II and scientists belonging to the Manhattan Project worked on calculations for the atomic bomb. Meanwhile, in one of the buildings, future Nobel Prize winning theoretical physicist Richard Feynman was cracking the combination lock on a safe because doing so intrigued him. Thatโs as good a broad summary of Feynman as any: scientific integrity with curiosity driving both his work and his fun.
One step closer to computers that process data at the speed of light.
Inside a small laboratory in lush countryside about 50 miles north of New York City, an elaborate tangle of tubes and electronics dangles from the ceiling. This mess of equipment is a computer. Not just any computer, but one on the verge of passing what may, perhaps, go down as one of the most important milestones in the history of the field.
In terms of size, it may be the smallest scientific breakthrough ever made at Harvard.
La fusion nuclรฉaire est une source dโรฉnergie aussi prometteuse quโelle est difficile ร maรฎtriser sur Terre. Si la force gravitationnelle permet de crรฉer les conditions extrรชmes nรฉcessaires ร la fusion des noyaux dโhydrogรจne dans les รฉtoiles, dโautres solutions doivent รชtre imaginรฉes sur Terre.
Le 11 fรฉvrier 2016 est une date qui restera gravรฉe dans lโhistoire de lโastronomie avec lโannonce officielle par les laboratoires LIGO et Virgo de la premiรจre observation directe dโune onde gravitationnelle. Lโarticle publiรฉ dans la prestigieuse revue amรฉricaine Physical Review Letters prรฉsente la dรฉtection qui a รฉtรฉ faite en septembre 2015 sur les deux sites amรฉricains jumeaux LIGO distants de 3 000 km.
Through hard work, ingenuity and a little cooperation from nature, scientists on the BASE experiment vastly improved their measurement of a property of protons and antiprotons.
Researchers at UNIGE have demonstrated the entanglement between 16 million atoms in a crystal crossed by a single photon, confirming the theory behind the quantum networks of the future
Lโorigine des รฉlรฉments chimiques les plus lourds tels que lโor ou le plomb enfin รฉlucidรฉe ! Des observations associant dรฉtection dโondes gravitationnelles et signaux รฉlectromagnรฉtiques dans toutes les longueurs dโonde, effectuรฉes par la collaboration internationale LIGO-Virgo, ont permis dโassister pour la premiรจre fois ร la fusion dโรฉtoiles ร neutrons. Retour sur cet รฉvรจnement scientifique dโune ampleur sans prรฉcรฉdent, qui va permettre de lever le voile sur plusieurs รฉnigmes astrophysiques.
The missing links between galaxies have finally been found. This is the first detection of the roughly half of the normal matter in our universe โ protons, neutrons and electrons โ unaccounted for by previous observations of stars, galaxies and other bright objects in space.
La dรฉformation de lโespace-temps engendrรฉe par une fusion de trous noirs a รฉtรฉ captรฉe par lโinstrument Virgo, en Italie, en lien avec un dรฉtecteur amรฉricain.
Humans have problems with quantum mechanics. We have excellent intuition about the motion of a tennis ball tossed in the air, but what about an electron trapped in a box? The tendency is to use the same tennis ball rules and apply it to the electronโbut it doesn't work. We have to use different models to explain properties of very very small things. We call this quantum mechanics (as opposed to classical mechanics).
In the popular game of Fruit Ninja, a user tries to slice fruit as it is tossed in the air. Of course, in the game you would just use your fingers to virtually cut up the fruit instead of a sword. In the latest episode of MythBusters, Adam and Jamie set out to test how difficult it would be to chop real fruit with a real sword. It turns out that it is indeed more difficult in real life.
The Surprising Scientific Answer Has A Lot More Than Just Heat Exchange Involved.
Japanese physicists have finally begun to tease apart one of the more important cosmic conundrums
But particle detectors arenโt always so complicated. In fact, some particle detectors are so simple that you can make (and operate) them in your own home.
Cโest une expรฉrience qui sโappelle XENON1T et elle met en ลuvre le plus gros dรฉtecteur de matiรจre noire jamais construit. XENON1T vient dโรชtre inaugurรฉe il y a quelques jours au laboratoire souterrain du Gran Sasso en Italie et entrera en fonction au printemps 2016 pour surpasser en quelques semaines toutes les autres expรฉriences similaires fonctionnant depuis des annรฉes.
Quatriรจme รฉtat de la matiรจre, un plasma atteint gรฉnรฉralement plusieurs millions de degrรฉs. Mais il existe aussi des plasmas froids, qu'on utilise de plus en plus pour lโรฉclairage, la mรฉdecine et la propulsion spatiale.
Aujourdโhui, les scientifiques du Laser Interferometer Gravitational-Wave Observatory ou LIGO ont fiรจrement annoncรฉ avoir dรฉtectรฉ les toutes premiรจres ondes gravitationnelles. Dรฉcrites il y a exactement cent ans dans la Thรฉorie de la Relativitรฉ Gรฉnรฉrale par Albert Einstein, ces ondes, quโon a longtemps crues รชtre beaucoup trop faibles pour รชtre captรฉes, ont enfin รฉtรฉ dรฉtectรฉes.